2 분 소요

간단한 예제를 R을 통하여 알아본다

데이터 설명

R분석

  • 분석

    
      # 1) Old Case Read
      oCR = read.csv('old_data.csv', header = T , stringsAsFactors=F )
    
      # 2) New Case read
      nCR = read.csv('new_data.csv', header = T , stringsAsFactors=F )
    
      # 3) 가중치부여여
      wg_list = list(wg_n1=0.05, wg_n2=0.05, wg_n3=0.15, wg_n4=0.15, wg_n5=0.20, wg_n6=0.15, wg_c1=0.10 , wg_c2=0.15)
    
      # 4) 거리 및유사도 계산 - 사용자 함수
      df = cbrUsrFunction(oCR, nCR , getDistVar)
    
      # 5) 결과
      df[df$sel_sim=='bestSimularity',]
    
    

    ※ 위에서 사용된 사용자함수 링크 link text

  • 결과 - 기존과 가장 유사사례

          x.n1 y.n1 diff.n1 x.n2 y.n2 diff.n2 x.n3 y.n3 diff.n3 x.n4 y.n4     diff.n4 x.n5 y.n5 diff.n5 x.n6 y.n6 diff.n6 x.c1 y.c1 diff.c1 x.c2 y.c2 diff.c2
      1   0.00 0.00    0.00 0.23 0.23       0 0.23 0.23       0 0.55 0.54 0.002307692 0.04 0.04       0 0.00 0.00       0    f    f       0    1    1       0
      12  0.10 0.00    0.01 0.38 0.38       0 0.38 0.38       0 0.55 0.54 0.002307692 0.06 0.06       0 0.06 0.06       0    m    m       0    1    1       0
      23  0.00 0.00    0.00 0.08 0.08       0 0.08 0.08       0 0.55 0.54 0.002307692 0.48 0.48       0 0.04 0.04       0    f    f       0    1    1       0
      34  0.25 0.25    0.00 0.23 0.23       0 0.38 0.38       0 0.50 0.50 0.000000000 0.34 0.34       0 0.09 0.09       0    f    f       0    1    1       0
      45  0.00 0.00    0.00 1.00 1.00       0 1.00 1.00       0 0.55 0.54 0.002307692 0.33 0.33       0 0.01 0.01       0    m    m       0    1    1       0
      56  0.10 0.00    0.01 1.00 1.00       0 1.00 1.00       0 0.55 0.54 0.002307692 0.33 0.33       0 0.01 0.01       0    f    f       0    1    1       0
      67  0.25 0.25    0.00 0.46 0.46       0 0.46 0.46       0 0.53 0.53 0.000000000 0.19 0.19       0 0.08 0.08       0    f    f       0    1    1       0
      78  0.00 0.00    0.00 1.00 1.00       0 1.00 1.00       0 0.65 0.65 0.000000000 0.19 0.19       0 0.00 0.00       0    m    m       0    1    1       0
      89  0.00 0.00    0.00 0.62 0.62       0 0.62 0.62       0 0.53 0.53 0.000000000 0.19 0.19       0 0.00 0.00       0    m    m       0    1    1       0
      100 0.10 0.00    0.01 0.62 0.62       0 0.69 0.69       0 0.55 0.54 0.002307692 0.32 0.32       0 0.10 0.10       0    m    m       0    1    1       0
          x.target y.target  diff.total Simularity x_idx y_idx        sel_sim
      1          0        0 0.002307692  0.9976976    o1    n1 bestSimularity
      12         0        0 0.012307692  0.9878419    o2    n2 bestSimularity
      23         0        0 0.002307692  0.9976976    o3    n3 bestSimularity
      34         0        0 0.000000000  1.0000000    o4    n4 bestSimularity
      45         0        0 0.002307692  0.9976976    o5    n5 bestSimularity
      56         0        0 0.012307692  0.9878419    o6    n6 bestSimularity
      67         1        1 0.000000000  1.0000000    o7    n7 bestSimularity
      78         0        0 0.000000000  1.0000000    o8    n8 bestSimularity
      89         0        0 0.000000000  1.0000000    o9    n9 bestSimularity
      100        0        0 0.012307692  0.9878419   o10   n10 bestSimularity
    

댓글남기기